Bootstrapping Wildfire Selectivity for the Forest Types of Canton Ticino (Switzerland)

Author:

Bajocco Sofia1,Pezzatti Gianni Boris2,De Angelis Antonella3,Conedera Marco2,Ricotta Carlo3

Affiliation:

1. Unit of Climatology and Meteorology Applied to Agriculture, Council for Research in Agriculture (CRA-CMA), and Department of Plant Biology, Sapienza University of Rome, Rome, Italy

2. Insubric Ecosystems Research Group, WSL Swiss Federal Research Institute, Bellinzona, Switzerland

3. Department of Plant Biology, Sapienza University of Rome, Rome, Italy

Abstract

Abstract Disturbances spreading through the landscape, like wildfires, are essential processes in modeling landscape structure and dynamics. Like other disturbances, fire may spread from a local epicenter with a propagation rate enhanced or retarded by the spatial arrangement of fuel across the landscape. Therefore, fire ignition and spread are a direct consequence of the presence and arrangement of fire-prone habitats. Generalizing the concept of “habitat selection” to every spatially distributed ecological process, the resource selection functions used in zoology to summarize habitat use by wildlife can be also used to characterize the wildfire’s pattern across the landscape. The aim of this paper is thus to quantify the relationship between forest cover and burnt area in Canton Ticino (Switzerland) during 1980–2007 using a bootstrap test of significance: that is, to identify forest types that burn more (or less) than expected from a random null model based on the regional availability of the resource (forest type). The results show that fires behave selectively for most forest types; whereas chestnut stands and broad-leaved forests display overproportional burnt areas, coniferous forests typically burn less than expected by a random null model.

Publisher

American Meteorological Society

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3