Estimating Snow Water Storage in North America Using CLM4, DART, and Snow Radiance Data Assimilation

Author:

Kwon Yonghwan1,Yang Zong-Liang1,Zhao Long1,Hoar Timothy J.2,Toure Ally M.3,Rodell Matthew4

Affiliation:

1. Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas

2. National Center for Atmospheric Research, Boulder, Colorado

3. Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, and Universities Space Research Association, Columbia, Maryland

4. Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Abstract

Abstract This paper addresses continental-scale snow estimates in North America using a recently developed snow radiance assimilation (RA) system. A series of RA experiments with the ensemble adjustment Kalman filter are conducted by assimilating the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) brightness temperature TB at 18.7- and 36.5-GHz vertical polarization channels. The overall RA performance in estimating snow depth for North America is improved by simultaneously updating the Community Land Model, version 4 (CLM4), snow/soil states and radiative transfer model (RTM) parameters involved in predicting TB based on their correlations with the prior TB (i.e., rule-based RA), although degradations are also observed. The RA system exhibits a more mixed performance for snow cover fraction estimates. Compared to the open-loop run (0.171 m RMSE), the overall snow depth estimates are improved by 1.6% (0.168 m RMSE) in the rule-based RA whereas the default RA (without a rule) results in a degradation of 3.6% (0.177 m RMSE). Significant improvement of the snow depth estimates in the rule-based RA is observed for tundra snow class (11.5%, p < 0.05) and bare soil land-cover type (13.5%, p < 0.05). However, the overall improvement is not significant (p = 0.135) because snow estimates are degraded or marginally improved for other snow classes and land covers, especially the taiga snow class and forest land cover (7.1% and 7.3% degradations, respectively). The current RA system needs to be further refined to enhance snow estimates for various snow types and forested regions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3