Attributing the Changes in Reference Evapotranspiration in Southwestern China Using a New Separation Method

Author:

Sun Shanlei1,Chen Haishan1,Sun Ge2,Ju Weimin3,Wang Guojie4,Li Xing1,Yan Guixia5,Gao Chujie1,Huang Jin1,Zhang Fangmin1,Zhu Siguang6,Hua Wenjian1

Affiliation:

1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education/International Joint Research Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, China

2. Eastern Forest Environmental Threat Assessment Center, Southern Research Station, U.S. Department of Agriculture Forest Services, Raleigh, North Carolina

3. International Institute for Earth System Science, Nanjing University, Nanjing, China

4. School of Geography and Remote Sensing, Nanjing University of Information Science and Technology, Nanjing, China

5. Applied Hydrometeorological Research Institute, Nanjing University of Information Science and Technology, Nanjing, China

6. College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Abstract

Abstract This study investigated monthly and annual reference evapotranspiration changes over southwestern China (SWC) from 1960 to 2012, using the Food and Agriculture Organization of the United Nations’ report 56 (FAO-56) Penman–Monteith equation and routine meteorological observations at 269 weather sites. During 1960–2012, the monthly and annual decreased at most sites. Moreover, the SWC regional average trend in annual was significantly negative (p < 0.05); this trend was the same in most months. A new separation method using several numerical experiments was proposed to quantify each driving factor’s contribution to changes and exhibited higher accuracy based on several validation criteria, after which an attribution analysis was performed. Across SWC, the declining annual was mainly due to decreased net radiation (RN). Spatially, the annual changes at most sites in eastern SWC (excluding southeastern West Guangxi) were generally due to RN, whereas wind speed (WND) or vapor pressure deficit (VPD) was the determinant at other sites. Nevertheless, the determinants differed among 12 months. For the whole SWC, increased VPD in February and decreased WND in April, May, and October were the determinant of decreased ; however, decreased RN was the determinant in other months. Overall, the determinant of the monthly changes exhibited a complex spatial pattern. A complete analysis of changes and the related physical mechanisms in SWC is necessary to better understand hydroclimatological extremes (e.g., droughts) and to develop appropriate strategies to sustain regional development (e.g., water resources and agriculture). Importantly, this separation method provides new perspective for quantitative attribution analyses and thus may be implemented in various scientific fields (e.g., climatology and hydrology).

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Ministry of Water Resources

Natural Science Foundation for Higher Education Institutions in Jiangsu Province

the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions

Publisher

American Meteorological Society

Subject

Atmospheric Science

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3