Scaling and Distributional Properties of Precipitation Interamount Times

Author:

Schleiss Marc1

Affiliation:

1. Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Abstract

Abstract The scaling and distributional properties of precipitation interamount times (IATs) are investigated using 10 years of high-resolution rain gauge observations from the U.S. Climate Reference Network. Results show that IATs above 200 mm tend to be approximately uncorrelated and normally distributed. As one moves toward smaller scales, autocorrelation and skewness increase and distributions progressively evolve into Weibull, Gamma, lognormal, and Pareto. This procession is interpreted as a sign of increasing complexity from large to small scales in a system composed of many interacting components. It shows that, as one approaches finer scales, IATs take over more of the characteristics of power-law distributions and (multi)fractals. Regression analysis on the log moments reveals that IATs generally exhibit better scaling, that is, smaller departures from multifractality, than precipitation amounts over the same range of scales. The improvement is attributed to the fact that IATs, unlike rainfall rates, always remain positive, no matter how small the scale. In particular, the scaling is shown to be more resilient to dry periods within rain events. Nevertheless, most analyzed IAT time series still exhibited a breakpoint at about 20 mm (7 days), corresponding to the average lifetime of a low pressure system at midlatitudes. Additional breakpoints in IATs at smaller and larger time scales are possible, but could not be determined unambiguously. The results highlight the potential of IATs as a new and promising tool for the stochastic modeling, simulation, and downscaling of precipitation.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3