Comparison and Assessment of Three Advanced Land Surface Models in Simulating Terrestrial Water Storage Components over the United States

Author:

Xia Youlong1,Mocko David2,Huang Maoyi3,Li Bailing4,Rodell Matthew2,Mitchell Kenneth E.5,Cai Xitian6,Ek Michael B.7

Affiliation:

1. I. M. Systems Group at NOAA/NCEP/Environmental Modeling Center, College Park, Maryland

2. Hydrological Science Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

3. Pacific Northwest National Laboratory, Richland, Washington

4. Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

5. Prescient Weather Ltd., State College, Pennsylvania

6. Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

7. NOAA/NCEP/Environmental Modeling Center, College Park, Maryland

Abstract

Abstract To prepare for the next-generation North American Land Data Assimilation System (NLDAS), three advanced land surface models [LSMs; i.e., Community Land Model, version 4.0 (CLM4.0); Noah LSM with multiphysics options (Noah-MP); and Catchment LSM-Fortuna 2.5 (CLSM-F2.5)] were run for the 1979–2014 period within the NLDAS-based framework. Unlike the LSMs currently executing in the operational NLDAS, these three advanced LSMs each include a groundwater component. In this study, the model simulations of monthly terrestrial water storage anomaly (TWSA) and its individual water storage components are evaluated against satellite-based and in situ observations, as well as against reference reanalysis products, at basinwide and statewide scales. The quality of these TWSA simulations will contribute to determining the suitability of these models for the next phase of the NLDAS. Overall, it is found that all three models are able to reasonably capture the monthly and interannual variability and magnitudes of TWSA. However, the relative contributions of the individual water storage components to TWSA are very dependent on the model and basin. A major contributor to the TWSA is the anomaly of total column soil moisture content for CLM4.0 and Noah-MP, while the groundwater storage anomaly is the major contributor for CLSM-F2.5. Other water storage components such as the anomaly of snow water equivalent also play a role in all three models. For each individual water storage component, the models are able to capture broad features such as monthly and interannual variability. However, there are large intermodel differences and quantitative uncertainties, which are motivating follow-on investigations in the NLDAS Science Testbed developed by the NASA and NCEP NLDAS teams.

Funder

Climate Program Office

U.S. Department of Energy

NASA’s Terrestrial Hydrology Program

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3