An Objective Algorithm for Detecting and Tracking Tropical Cloud Clusters: Implications for Tropical Cyclogenesis Prediction

Author:

Hennon Christopher C.1,Helms Charles N.2,Knapp Kenneth R.3,Bowen Amanda R.4

Affiliation:

1. University of North Carolina at Asheville, Asheville, North Carolina

2. The Florida State University, Tallahassee, Florida

3. NOAA/National Climatic Data Center, Asheville, North Carolina

4. NOAA/National Weather Service, Melbourne, Florida

Abstract

Abstract An algorithm to detect and track global tropical cloud clusters (TCCs) is presented. TCCs are organized large areas of convection that form over warm tropical waters. TCCs are important because they are the “seedlings” that can evolve into tropical cyclones. A TCC satisfies the necessary condition of a “preexisting disturbance,” which provides the required latent heat release to drive the development of tropical cyclone circulations. The operational prediction of tropical cyclogenesis is poor because of weaknesses in the observational network and numerical models; thus, past studies have focused on identifying differences between “developing” (evolving into a tropical cyclone) and “nondeveloping” (failing to do so) TCCs in the global analysis fields to produce statistical forecasts of these events. The algorithm presented here has been used to create a global dataset of all TCCs that formed from 1980 to 2008. Capitalizing on a global, Gridded Satellite (GridSat) infrared (IR) dataset, areas of persistent, intense convection are identified by analyzing characteristics of the IR brightness temperature (Tb) fields. Identified TCCs are tracked as they move around their ocean basin (or cross into others); variables such as TCC size, location, convective intensity, cloud-top height, development status (i.e., developing or nondeveloping), and a movement vector are recorded in Network Common Data Form (NetCDF). The algorithm can be adapted to near-real-time tracking of TCCs, which could be of great benefit to the tropical cyclone forecast community.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference38 articles.

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3