The Use of Euclidean Geometric Distance on RGB Color Space for the Classification of Sky and Cloud Patterns

Author:

Mantelli Neto Sylvio Luiz1,von Wangenheim Aldo2,Pereira Enio Bueno3,Comunello Eros4

Affiliation:

1. Earth System Sciences Center (CCST-INE), National Institute for Space Research, São José dos Campos, São Paulo, and Knowledge and Engineering Department (EGC), and Image Processing and Graphics Computing Lab (LAPIX), and Solar Energy Lab (LABSOLAR), Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil

2. Image Processing and Graphics Computing Lab (LAPIX), Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil

3. Earth System Sciences Center (CCST-INE), National Institute for Space Research, São José dos Campos, São Paulo, Brazil

4. University of Itajai Valley (UNIVALI), São José, Santa Catarina, Brazil

Abstract

Abstract The current work describes the use of multidimensional Euclidean geometric distance (EGD) and Bayesian methods to characterize and classify the sky and cloud patterns present in image pixels. From specific images and using visualization tools, it was noticed that sky and cloud patterns occupy a typical locus on the red–green–blue (RGB) color space. These two patterns were linearly distributed parallel to the RGB cube’s main diagonal at distinct distances. A characterization of the cloud and sky patterns EGD was done by supervision to eliminate errors due to outlier patterns in the analysis. The exploratory data analysis of EGD for sky and cloud patterns showed a Gaussian distribution, allowing generalizations based on the central limit theorem. An intensity scale of brightness is proposed from the Euclidean geometric projection (EGP) on the RGB cube’s main diagonal. An EGD-based classification method was adapted to be properly compared with existing ones found in related literature, because they restrict the examined color-space domain. Elimination of this limitation was considered a sufficient criterion for a classification system that has resource restrictions. The EGD-adapted results showed a correlation of 97.9% for clouds and 98.4% for sky when compared to established classification methods. It was also observed that EGD was able to classify cloud and sky patterns invariant to their brightness attributes and with reduced variability because of the sun zenith angle changes. In addition, it was observed that Mie scattering could be noticed and eliminated (together with the reflector’s dust) as an outlier during the analysis. Although Mie scattering could be classified with additional analysis, this is left as a suggestion for future work.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3