A New Dual-Polarization Radar Rainfall Algorithm: Application in Colorado Precipitation Events

Author:

Cifelli R.1,Chandrasekar V.2,Lim S.2,Kennedy P. C.3,Wang Y.2,Rutledge S. A.3

Affiliation:

1. National Oceanic and Atmospheric Administration/Earth System Research Laboratory, Boulder, and Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

2. Department of Computer and Electrical Engineering, Colorado State University, Fort Collins, Colorado

3. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Abstract

Abstract The efficacy of dual-polarization radar for quantitative precipitation estimation (QPE) has been demonstrated in a number of previous studies. Specifically, rainfall retrievals using combinations of reflectivity (Zh), differential reflectivity (Zdr), and specific differential phase (Kdp) have advantages over traditional Z–R methods because more information about the drop size distribution (DSD) and hydrometeor type are available. In addition, dual-polarization-based rain-rate estimators can better account for the presence of ice in the sampling volume. An important issue in dual-polarization rainfall estimation is determining which method to employ for a given set of polarimetric observables. For example, under what circumstances does differential phase information provide superior rain estimates relative to methods using reflectivity and differential reflectivity? At Colorado State University (CSU), an optimization algorithm has been developed and used for a number of years to estimate rainfall based on thresholds of Zh, Zdr, and Kdp. Although the algorithm has demonstrated robust performance in both tropical and midlatitude environments, results have shown that the retrieval is sensitive to the selection of the fixed thresholds. In this study, a new rainfall algorithm is developed using hydrometeor identification (HID) to guide the choice of the particular rainfall estimation algorithm. A separate HID algorithm has been developed primarily to guide the rainfall application with the hydrometeor classes, namely, all rain, mixed precipitation, and all ice. Both the data collected from the S-band Colorado State University–University of Chicago–Illinois State Water Survey (CSU–CHILL) radar and a network of rain gauges are used to evaluate the performance of the new algorithm in mixed rain and hail in Colorado. The evaluation is also performed using an algorithm similar to the one developed for the Joint Polarization Experiment (JPOLE). Results show that the new CSU HID-based algorithm provides good performance for the Colorado case studies presented here.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference42 articles.

1. Relation between measured radar reflectivity and surface rainfall.;Austin;Mon. Wea. Rev.,1987

2. Implementations of CSU hydrometeor classification scheme for C-band polarimetric radars.;Baldini,2005

3. A new model for the equilibrium shape of raindrops.;Beard;J. Atmos. Sci.,1987

4. An evaluation of radar rainfall estimates from specific differential phase.;Brandes;J. Atmos. Oceanic Technol.,2001

5. Polarimetric Doppler Weather Radar: Principles and Applications.;Bringi,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3