Estimation of Near-Ground Propagation Conditions Using Radar Ground Echo Coverage

Author:

Park Shinju1,Fabry Frédéric1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Abstract

Abstract The vertical gradient of refractivity (dN/dh) determines the path of the radar beam; namely, the larger the negative values of the refractivity gradient, the more the beam bends toward the ground. The variability of the propagation conditions significantly affects the coverage of the ground echoes and, thus, the quality of the scanning radar measurements. The information about the vertical gradient of refractivity is usually obtained from radiosonde soundings whose use, however, is limited by their coarse temporal and spatial resolution. Because radar ground echo coverage provides clues about how severe the beam bending can be, we have investigated a method that uses radar observations to infer propagation conditions with better temporal resolution than the usual soundings. Using the data collected during the International H2O Project (IHOP_2002), this simple method has shown some skill in capturing the propagation conditions similar to these estimated from soundings. However, the evaluation of the method has been challenging because of 1) the limited resolution of the conventional soundings in time and space, 2) the lack of other sources of data with which to compare the results, and 3) the ambiguity in the separation of ground from weather echoes.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference35 articles.

1. Radar-duct and boundary-layer characteristics over the Gulf area.;Atkinson;Quart. J. Roy. Meteor. Soc.,2005

2. A case study of subrefractive conditions at Wallops Island, Virginia.;Babin;J. Appl. Meteor.,1995

3. LKB-based evaporation duct model comparison with buoy data.;Babin;J. Appl. Meteor.,2002

4. Propagation of Radiowaves.;Barclay,2003

5. Radar Observations of the Atmosphere.;Battan,1973

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3