Improving Satellite-Derived Sea Surface Temperature Accuracies Using Water Vapor Profile Data

Author:

Barton Ian J.1

Affiliation:

1. CSIRO Marine and Atmospheric Research, Hobart, Tasmania, Australia

Abstract

Abstract Analyses based on atmospheric infrared radiative transfer simulations and collocated ship and satellite data are used to investigate whether knowledge of vertical atmospheric water vapor distributions can improve the accuracy of sea surface temperature (SST) estimates from satellite data. Initially, a simulated set of satellite brightness temperatures generated by a radiative transfer model with a large maritime radiosonde database was obtained. Simple linear SST algorithms are derived from this dataset, and these are then reapplied to the data to give simulated SST estimates and errors. The concept of water vapor weights is introduced in which a weight is a measure of the layer contribution to the difference between the surface temperature and that measured by the satellite. The weight of each atmospheric layer is defined as the layer water vapor amount multiplied by the difference between the SST and the midlayer temperature. Satellite-derived SST errors are then plotted against the difference in the sum of weights above an altitude of 2.5 km and that below. For the simple two-channel (with typical wavelengths of 11 and 12 μm) analysis, a clear correlation between the weights differences and the SST errors is found. A second group of analyses using ship-released radiosondes and satellite data also show a correlation between the SST errors and the weights differences. The analyses suggest that, for an SST derived using a simple two-channel algorithm, the accuracy may be improved if account is taken of the vertical distribution of water vapor above the ocean surface. For SST estimates derived using algorithms that include data from a 3.7-μm channel, there is no such correlation found.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference17 articles.

1. The occurrence of radio ducting, superrefractive and subrefractive conditions in Australian maritime regions.;Baker,1978

2. Satellite-derived sea surface temperatures: Current status.;Barton;J. Geophys. Res.,1995

3. Improved techniques for derivation of sea surface temperatures from ATSR data.;Barton;J. Geophys. Res.,1998

4. Satellite-derived sea surface temperatures—A case study of error variability.;Barton,2007

5. Toward improved validation of satellite sea surface skin temperature measurements for climate research.;Donlon;J. Climate,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3