Seasonal Hydrological Forecasts for Watersheds over the Southeastern United States for the Boreal Summer and Fall Seasons

Author:

Bastola Satish1,Misra Vasubandhu2,Li Haiqin1

Affiliation:

1. Center for Ocean-Atmospheric Prediction Studies, The Florida State University, Tallahassee, Florida

2. Center for Ocean-Atmospheric Prediction Studies, and Department of Earth, Ocean and Atmospheric Sciences, and Florida Climate Institute, The Florida State University, Tallahassee, Florida

Abstract

Abstract The authors evaluate the skill of a suite of seasonal hydrological prediction experiments over 28 watersheds throughout the southeastern United States (SEUS), including Florida, Georgia, Alabama, South Carolina, and North Carolina. The seasonal climate retrospective forecasts [the Florida Climate Institute–Florida State University Seasonal Hindcasts at 50-km resolution (FISH50)] is initialized in June and integrated through November of each year from 1982 through 2001. Each seasonal climate forecast has six ensemble members. An earlier study showed that FISH50 represents state-of-the-art seasonal climate prediction skill for the summer and fall seasons, especially in the subtropical and higher latitudes. The retrospective prediction of streamflow is based on multiple calibrated rainfall–runoff models. The hydrological models are forced with rainfall from FISH50, (quantile based) bias-corrected FISH50 rainfall (FISH50_BC), and resampled historical rainfall observations based on matching observed analogs of forecasted quartile seasonal rainfall anomalies (FISH50_Resamp). The results show that direct use of output from the climate model (FISH50) results in huge biases in predicted streamflow, which is significantly reduced with bias correction (FISH50_BC) or by FISH50_Resamp. On a discouraging note, the authors find that the deterministic skill of retrospective streamflow prediction as measured by the normalized root-mean-square error is poor compared to the climatological forecast irrespective of how FISH50 (e.g., FISH50_BC, FISH50_Resamp) is used to force the hydrological models. However, our analysis of probabilistic skill from the same suite of retrospective prediction experiments reveals that, over the majority of the 28 watersheds in the SEUS, significantly higher probabilistic skill than climatological forecast of streamflow can be harvested for the wet/dry seasonal anomalies (i.e., extreme quartiles) using FISH50_Resamp as the forcing. The authors contend that, given the nature of the relatively low climate predictability over the SEUS, high deterministic hydrological prediction skills will be elusive. Therefore, probabilistic hydrological prediction for the SEUS watersheds is very appealing, especially with the current capability of generating a comparatively huge ensemble of seasonal hydrological predictions for each watershed and for each season, which offers a robust estimate of associated forecast uncertainty.

Publisher

American Meteorological Society

Subject

General Earth and Planetary Sciences

Reference73 articles.

1. Multimodel combination techniques for analysis of hydrological simulations: Application to distributed model intercomparison project results;Ajami;J. Hydrometeor.,2006

2. Impact of initialization strategies and observations on seasonal forecast skill;Balmaseda;Geophys. Res. Lett.,2009

3. The ECMWF ocean analysis system: ORA-S3;Balmaseda;Mon. Wea. Rev.,2008

4. Evaluation of dynamically downscaled reanalysis precipitation data for hydrological application;Bastola;Hydrol. Processes,2013

5. Role of hydrological model uncertainty in climate change impact studies;Bastola;Adv. Water Resour.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3