Cell Merger Potential in Multicell Thunderstorms of Weakly Sheared Environments: Cell Separation Distance versus Planetary Boundary Layer Depth

Author:

Stalker James R.1,Knupp Kevin R.2

Affiliation:

1. Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico

2. Department of Atmospheric Sciences, University of Alabama in Huntsville, National Space Science and Technology Center, Huntsville, Alabama

Abstract

Abstract Using high-resolution three-dimensional numerical experiments, this paper shows that the cell separation distance scales as 0.75 times the planetary boundary layer (PBL) depth for successful cell mergers between constructively interacting cells within multicell thunderstorms. This boundary layer scaling is determined from several simulations of convective cell pairs with a fixed PBL depth and is shown to be valid for other sensitivity simulations with larger PBL depths. This research establishes a robust and quantitative relation between prestorm ambient conditions and cell merger potential useful for research efforts on the multifaceted cell merger process of multicell thunderstorms. The weakly sheared ambient prestorm conditions of the 9 August 1991 Convection and Precipitation/Electrification Experiment (CaPE) multicell thunderstorm are used to initialize the cell pair simulations. Since ambient wind and wind shear are assumed to be zero, only simple cell mergers, defined in this study as those between cell updraft cores joined but not overlapping in the convective stage, are shown to be possible. The coarse-resolution simulations of Stalker suggest that ambient wind shear may be necessary for forced cell mergers, defined in this study as those in which the initial updraft cores are found apart. The scenarios of overlapping initial updraft cores for cell merger are considered physically invalid in this study.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3