Evaluation of Various Approximations in Atmosphere and Ocean Modeling Based on an Exact Treatment of Gravity Wave Dispersion

Author:

Dukowicz John K.1

Affiliation:

1. Los Alamos National Laboratory, Los Alamos, New Mexico

Abstract

Abstract Various approximations of the governing equations of compressible fluid dynamics are commonly used in both atmospheric and ocean modeling. Their main purpose is to eliminate the acoustic waves that are potentially responsible for inefficiency in the numerical solution, leaving behind gravity waves. The author carries out a detailed study of gravity wave dispersion for seven such approximations, individually and in combination, to exactly evaluate some of the often subtle errors. The atmospheric and oceanic cases are qualitatively and quantitatively different because, although they solve the same equations, their boundary conditions are entirely different and they operate in distinctly different parameter regimes. The atmospheric case is much more sensitive to approximation. The recent “unified” approximation of Arakawa and Konor is one of the most accurate. Remarkably, a simpler approximation, the combined Boussinesq–dynamically rigid approximation turns out to be exactly equivalent to the unified approximation with respect to gravity waves. The oceanic case is insensitive to the effects of any of the approximations, except for the hydrostatic approximation. The hydrostatic approximation is inaccurate at large wavenumbers in both the atmospheric and oceanic cases because it eliminates the entire buoyancy oscillation flow regime and is therefore to be restricted to low aspect ratio flows. For oceanic applications, certain approximations, such as the unified, dynamically rigid, and dynamically stiff approximations, are particularly interesting because they are accurate and approximately conserve mass, which is important for the treatment of sea level rise.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3