Sierra Barrier Jets, Atmospheric Rivers, and Precipitation Characteristics in Northern California: A Composite Perspective Based on a Network of Wind Profilers

Author:

Neiman Paul J.1,Hughes Mimi2,Moore Benjamin J.2,Ralph F. Martin1,Sukovich Ellen M.2

Affiliation:

1. Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

2. Cooperative Institute for Research in the Environmental Sciences, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Abstract

Abstract Five 915-MHz wind profilers and GPS receivers across California's northern Central Valley (CV) and adjacent Sierra foothills and coastal zone, in tandem with a 6-km-resolution gridded reanalysis dataset generated from the Weather Research and Forecasting Model, document key spatiotemporal characteristics of Sierra barrier jets (SBJs), landfalling atmospheric rivers (ARs), and their interactions. Composite kinematic and thermodynamic analyses are based on the 13 strongest SBJ cases observed by the Sloughhouse profiler between 2009 and 2011. The analyses show shallow, cool, south-southeasterly (i.e., Sierra parallel) flow and associated water vapor transport strengthening with time early in the 24-h compositing period, culminating in an SBJ core at <1 km above ground over the eastern CV. The SBJ core increases in altitude up the Sierra's windward slope and poleward toward the north end of the CV, but it does not reach the westernmost CV. Above the developing SBJ, strengthening southwesterly flow descends temporally in response to the landfalling AR. The moistening SBJ reaches maximum intensity during the strongest AR flow aloft, at which time the core of the AR-parallel vapor transport slopes over the SBJ. The inland penetration of the AR through the San Francisco Bay gap in the coastal mountains contributes to SBJ moistening and deepening. The SBJ subsequently weakens with the initial cold-frontal period aloft, during which the shallow flow shifts to southwesterly and the heaviest precipitation falls in the Sierra foothills. An orographic precipitation analysis quantitatively links the Sierra-perpendicular (nearly AR parallel) vapor fluxes to enhanced precipitation along the Sierra's windward slope and the SBJ-parallel fluxes to heavy precipitation at the north end of the CV.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference68 articles.

1. A mechanism for assisting in the release of convective instability;Beebe;Mon. Wea. Rev.,1955

2. Appalachian cold-air damming;Bell;Mon. Wea. Rev.,1988

3. Meteorological conditions for the formation of rain;Bjerknes;Geofys. Publ.,1921

4. Airborne dual-Doppler observations of an intense frontal system approaching the Pacific Northwest coast;Braun;Mon. Wea. Rev.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3