An Unusual Aerial Photograph of an Eddy Circulation in Marine Stratocumulus Clouds

Author:

Muller Bradley M.1,Herbster Christopher G.1,Mosher Frederick R.1

Affiliation:

1. Department of Applied Aviation Sciences, Embry–Riddle Aeronautical University, Daytona Beach, Florida

Abstract

Abstract An aerial photograph of a cyclonic, von Kármán–like vortex in the marine stratocumulus clouds off the California coast, taken by a commercial pilot near Grover Beach, is presented. It is believed that this is the first photograph of such an eddy, taken from an airplane, to appear in publication. The eddy occurred with a strong inversion above a shallow marine boundary layer, in the lee of high, inversion-penetrating terrain. Tower and surface wind measurements plotted on satellite imagery demonstrate that the Grover Beach eddy was not just a cloud-level feature, but extended through the marine atmospheric boundary layer (MABL) to the surface. Evolution of the flow during the formation of the eddy appears similar to idealized numerical simulations of blocked MABL flow from the literature. The tower measurements sampled the northern part of the eddy circulation during its formation just offshore. The 2°–3°C temperature increases and then decreases during and after the eddy passage may be indicative of warmer air, from sheltered locations to the southeast, and/or downslope flow, being advected by and included into the eddy circulation. Satellite data compared with sequences of wind reversals at two different levels of the meteorological tower suggest that the eddy is tilted with height, at least during its formation stage. Formation mechanisms are discussed, but the subsynoptic observations are inadequate to resolve basic questions about the flow; ultimately a high-resolution model simulation is needed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3