Impact of Variable-Resolution Meshes on Midlatitude Baroclinic Eddies Using CAM-MPAS-A

Author:

Rauscher Sara A.1,Ringler Todd D.1

Affiliation:

1. Fluid Dynamics and Solid Mechanics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico

Abstract

Abstract The effects of a variable-resolution mesh on simulated midlatitude baroclinic eddies in idealized settings are examined. Both aquaplanet and Held–Suarez experiments are performed using the Model for Prediction Across Scales-Atmosphere (MPAS-A) hydrostatic dynamical core implemented within the National Science Foundation–Department of Energy (NSF–DOE) Community Atmosphere Model (CAM-MPAS-A). In the real world, midlatitude eddy activity is organized by orography, land–sea contrasts, and sea surface temperature anomalies. In these zonally symmetric idealized settings, transients should have an equal probability of occurring at any longitude. However, the use of a variable-resolution mesh with a circular high-resolution region centered at 30°N results in a maximum in eddy kinetic energy on the eastern side and downstream of this high-resolution region in both aquaplanet and Held–Suarez CAM-MPAS-A simulations. The presence of a geographically confined maximum in both simulations suggests this response is mainly attributable to CAM-MPAS-A’s ability to resolve eddies via the model dynamics as resolution increases. However, in the aquaplanet simulation, a secondary maximum in eddy kinetic energy is present, which is probably linked to the resolution dependencies of the CAM physics. These mesh responses must be considered when interpreting real-world variable-resolution CAM-MPAS-A simulations, particularly in climate change experiments.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3