Quality of the Target Area for Metrics with Different Nonlinearities in a Mesoscale Convective System

Author:

Huang Ling1,Meng Zhiyong1

Affiliation:

1. Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Abstract

Abstract A direct piece-by-piece data assimilation targeting strategy through observing system simulation experiments was used to examine the quality of the target area for forecast metrics with different nonlinearities in a mesoscale convective vortex–associated rainfall event from both a deterministic and probabilistic perspective. The target area was determined based on the impact of assimilating synthetic wind-profiler observations, piece by piece, on the forecast error of strongly nonlinear rainfall and weakly nonlinear total energy around the initial vortex center. The quality of the target area in terms of its effectiveness and variability was examined for members of a reasonable ensemble. Apparently different target areas were found for different members, even for those with very small differences for both forecast metrics, with a larger variability observed for rainfall than for total energy. This result indicated that target areas estimated in deterministic scenarios are likely unreliable. Probabilistic target areas were created by averaging data-impact index values over the ensemble. Significant differences were also observed in the ensemble-based target areas for rainfall and total energy. For total energy, assimilating data in an inaccurate target area could decrease the forecast error at a similar magnitude as that in the target area. For rainfall, however, much less error reduction was obtained, the magnitude of which was almost comparable to the no-data-assimilation experiment. Overall, the results of this study suggest that designing a particular observation plan based on an estimated target area could be unnecessary for total energy and useless for rainfall, given the difficulty involved in accurately determining a target area in an operational setting.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3