A Description and Evaluation of an Automated Approach for Feature-Based Tracking of Rossby Wave Packets

Author:

Souders Matthew B.1,Colle Brian. A.1,Chang Edmund K. M.1

Affiliation:

1. School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York

Abstract

Abstract This paper describes an automated approach to track Rossby wave packets (RWPs), and the sensitivity of various tracking parameters and methods used in filtering the raw data in the feature-based tracking. The NCEP–NCAR reanalysis meridional wind and geopotential height data at 300 hPa every 6 h were spectrally filtered using a Hilbert transform technique under the assumption that RWPs propagate along a waveguide defined by the 14-day running average of the 300-hPa wind. After some spatial and temporal smoothing, the local maxima in RWP amplitude (WPA) were tracked using two objective techniques: a point-based cost optimization routine and a hybrid approach using point identification and object-based tracking following rules. A variation of the total energy flux term of the eddy kinetic energy equation was used to subjectively verify RWP tracks in order to compare the performance of each tracking method. When tracking methods are verified over two winter seasons, the hybrid technique outperformed point-based tracking, particularly for track duration and propagation. Problems with tracking were found to be most common during periods when two RWPs merge, one RWP splits into multiple packets, or an RWP moves from one storm track to another. RWPs are found to move irregularly rather than linearly, with their motion and intensity best described as pulse like. The sensitivity to some of the parameters used in the tracking was also explored.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3