Initial Condition Sensitivity and Predictability of a Severe Extratropical Cyclone Using a Moist Adjoint

Author:

Doyle James D.1,Amerault Clark1,Reynolds Carolyn A.1,Reinecke P. Alex1

Affiliation:

1. Naval Research Laboratory, Monterey, California

Abstract

Abstract The sensitivity and predictability of a rapidly developing extratropical cyclone, Xynthia, that had a severe impact on Europe is explored using a high-resolution moist adjoint modeling system. The adjoint diagnostics indicate that the intensity of severe winds associated with the front just prior to landfall was particularly sensitive to perturbations in the moisture and temperature fields and to a lesser degree the wind fields. The sensitivity maxima are found in the low- and midlevels, oriented in a sloped region along the warm front, and maximized within the warm conveyor belt. The moisture sensitivity indicates that only a relatively small filament of moisture within an atmospheric river present at the initial time was critically important for the development of Xynthia. Adjoint-based optimal perturbations introduced into the tangent linear and nonlinear models exhibit rapid growth over 36 h, while initial perturbations of the opposite sign show substantial weakening of the low-level jet and a marked reduction in the spatial extent of the strong low-level winds. The sensitivity fields exhibit an upshear tilt along the sloping warm conveyor belt and front, and the perturbations extract energy from the mean flow as they are untilted by the shear, consistent with the PV unshielding mechanism. The results of this study underscore the need for accurate moisture observations and data assimilation systems that can adequately assimilate these observations in order to reduce the forecast uncertainties for these severe extratropical cyclones. However, given the nature of the sensitivities and the potential for rapid perturbation and error growth, the intrinsic predictability of severe cyclones such as Xynthia is likely limited.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3