Airborne Measurements of Coastal Jet Transition around Point Conception, California

Author:

Rahn David A.1,Parish Thomas R.2,Leon David2

Affiliation:

1. Atmospheric Science Program, Department of Geography, University of Kansas, Lawrence, Kansas

2. Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Abstract

Abstract Low-level winds along the Californian coast during spring and early summer are typically strong and contained within the cool, well-mixed marine boundary layer (MBL). A temperature inversion separates the MBL from the warmer free troposphere. This setup is often represented by a two-layer shallow-water system with a lateral boundary. Near a prominent point such as Point Conception, California, the fast-moving MBL flow is supercritical and can exhibit distinct features including a compression bulge and an expansion fan. Measurements from the University of Wyoming King Air research aircraft on 19 May 2012 during the Precision Atmospheric MBL Experiment (PreAMBLE) captured wind in excess of 14 m s−1 off of Point Conception under clear skies and wind ~2 m s−1 east of San Miguel in the California Bight. A compression bulge was identified upwind of Point Conception. When the flow rounds the point, the MBL undergoes a near collapse and there is a spike in MBL height embedded in the general decrease of MBL height with greater turbulence just downwind that is associated with greater mixing through the inversion layer. Lidar and in situ measurements reveal that transport of continental aerosol is present near the pronounced MBL height change and that there is a complex vertical structure within the Santa Barbara Channel. Horizontal pressure gradients are obtained by measuring the slope of an isobaric surface. Observations of wind and pressure perturbations are able to be linked through a simple Bernoulli relationship. Variation of MBL depth explains most, but not all of the variation of the isobaric surface.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3