Observation Quality Control with a Robust Ensemble Kalman Filter

Author:

Roh Soojin1,Genton Marc G.2,Jun Mikyoung1,Szunyogh Istvan3,Hoteit Ibrahim2

Affiliation:

1. Department of Statistics, Texas A&M University, College Station, Texas

2. CEMSE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

3. Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Abstract

Abstract Current ensemble-based Kalman filter (EnKF) algorithms are not robust to gross observation errors caused by technical or human errors during the data collection process. In this paper, the authors consider two types of gross observational errors, additive statistical outliers and innovation outliers, and introduce a method to make EnKF robust to gross observation errors. Using both a one-dimensional linear system of dynamics and a 40-variable Lorenz model, the performance of the proposed robust ensemble Kalman filter (REnKF) was tested and it was found that the new approach greatly improves the performance of the filter in the presence of gross observation errors and leads to only a modest loss of accuracy with clean, outlier-free, observations.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference38 articles.

1. Variational quality control;Anderson;Quart. J. Roy. Meteor. Soc.,1999

2. Optimal robust filtering;Birmiwal;Stat. Decis.,1993

3. Outlier resistant prediction for stationary processes;Birmiwal;Stat. Decis.,1994

4. Analysis scheme in the ensemble Kalman filter;Burgers;Mon. Wea. Rev.,1998

5. Calvet, L. E., V.Czellar, and E.Ronchetti, cited 2012: Robust filtering. [Available online at http://ssrn.com/abstract=2123477.]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3