Simulating the Transition from Shallow to Deep Convection across Scales: The Role of Congestus Clouds

Author:

Champouillon Aude1,Rio Catherine1,Couvreux Fleur1

Affiliation:

1. a CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France

Abstract

Abstract An idealized case of gradual oceanic transition from shallow to deep convection is simulated at three different horizontal resolutions: one that resolves most of the turbulent eddies, one typical of cloud-resolving models, and one typical of general circulation models. The former serves as a reference and allows the identification of clouds as individual objects, distinguishing shallow cumulus, congestus, and cumulonimbus. At coarser resolutions, parameterizations of convection are included and assessed, with a particular focus on congestus clouds and precipitation associated with shallow convective clouds. Congestus clouds are found to contribute the most to turbulent transport during the transition, while occupying a volume comparable to shallow cumulus and cumulonimbus. Kilometer-scale horizontal resolutions prove to be insufficient to resolve congestus, and parameterization schemes of shallow and deep convection are not necessarily appropriate to represent those intermediate clouds. The representation of rainfall in the shallow convection scheme plays a key role in the transition. Sensitivity experiments show that enhanced rainfall inhibits convection in single-column simulations, while it favors resolved convection and spatial heterogeneities in three-dimensional simulations with kilometer-scale resolution. Results highlight the need for an appropriate parameterization of congestus in both kilometer-scale and large-scale models. The case study and the methods presented here are proposed as a useful framework to evaluate models and their parameterizations in a shallow-to-deep convection transition context.

Funder

Meteo-France

CNRS

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference53 articles.

1. The influence of shallow cloud populations on transitions to deep convection in the Amazon;Barber, K. A.,2022

2. A mass-flux convection scheme for regional and global models;Bechtold, P.,2001

3. The simulation of the diurnal cycle of convective precipitation over land in a global model;Bechtold, P.,2004

4. Representing equilibrium and nonequilibrium convection in large-scale models;Bechtold, P.,2014

5. A simplified PDF parameterization of subgrid-scale clouds and turbulence for cloud-resolving models;Bogenschutz, P. A.,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Role of the Toroidal Vortex in Cumulus Clouds' Entrainment and Mixing;Journal of Geophysical Research: Atmospheres;2024-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3