Solutions for Tropical Vertical Motion under Convective Quasi-Equilibrium Constraints

Author:

Dang Dong-Pha1,Yu Jia-Yuh1ORCID

Affiliation:

1. a Department of Atmospheric Sciences, National Central University, Taoyuan City, Taiwan

Abstract

Abstract Solutions for tropical convection (vertical motion), including both the first (deep) and the second baroclinic (shallow) modes, subject to convective quasi-equilibrium (CQE) constraints are formulated. Under CQE assumption, tropical convection ω(p, x, y) can be decomposed into a product of height-dependent variable Ωi(p) and space-dependent variable ∇·vi(x, y) with the former constrained by conservation of moist static energy (MSE) or dry static energy (DSE) perturbations, depending on whether the atmospheric column is dominated by ascending or descending motions. We then evaluate the roles of deep and shallow modes of convection in transporting moisture and static energy against observations using the European Centre for Medium-Range Weather Forecasts reanalysis data. The moisture transport by deep mode produces a spatial pattern similar to observations, except for an obvious underestimate of the magnitude over the eastern Pacific convergence zone (EPCZ) and cold tongue areas, where the contribution of shallow mode may account for up to 25% of the total moisture transport. In contrast, the MSE transport by deep mode exhibits a very poor performance, especially over the EPCZ where the observational MSE transport is negative, but a positive value is predicted by deep mode. Including the contribution of shallow mode immediately remedies this deficiency, due to a better representation of the bottom-heavy structure of ascending motions over the EPCZ. These improvements apply to almost the entire tropics, although the correlation tends to decrease away from the convergence zones. Since simple atmospheric models often assume a single heating (forcing) profile to represent the effect of cumulus convection, the present study highlights the importance and feasibility of including both deep and shallow modes in a simple atmospheric model, while at the same time maintaining the simple model framework, to more accurately represent the moisture and MSE transports by convection in the tropics.

Funder

National Science and Technology Council

Publisher

American Meteorological Society

Reference36 articles.

1. Atmospheric radiative profiles during EUREC4A;Albright, A. L.,2021

2. Geographic variability in the export of moist static energy and vertical motion profiles in the Tropical Pacific;Back, L. E.,2006

3. Estimating vertical motion profile top-heaviness: Reanalysis compared to satellite-based observations and stratiform rain fraction;Back, L. E.,2017

4. Impacts of vertical structure of large-scale vertical motion in tropical climate: Moist static energy framework;Bui, H. X.,2016

5. Impacts of vertical structure of convection in global warming: The role of shallow convection;Chen, C.-A.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3