Physics of the Eddy Memory Kernel of a Baroclinic Midlatitude Atmosphere

Author:

Vanderborght Elian1ORCID,Demaeyer Jonathan2,Manucharyan Georgy3,Moon Woosok4,Dijkstra Henk A.15

Affiliation:

1. a Institute for Marine and Atmospheric Research Utrecht, Department of Physics, Utrecht University, Utrecht, Netherlands

2. b Royal Meteorological Institute, Brussels, Belgium

3. c School of Oceanography, University of Washington, Seattle, Washington

4. d Department of Environmental Atmospheric Sciences, Pukyong National University, Pusan, South Korea

5. e Centre for Complex Systems Studies, Utrecht University, Utrecht, Netherlands

Abstract

Abstract In recent theory trying to explain the origin of baroclinic low-frequency atmospheric variability, the concept of eddy memory has been proposed. In this theory, the effect of synoptic-scale heat fluxes on the planetary-scale mean flow depends on the history of the mean meridional temperature gradient. Mathematically, this involves the convolution of a memory kernel with the mean meridional temperature gradient over past times. However, the precise shape of the memory kernel and its connection to baroclinic wave dynamics remains to be explained. In this study we use linear and proxy response theory to determine the shape of the memory kernel of a truncated two-layer quasigeostrophic atmospheric model. We find a memory kernel that relates the eddy heat flux to the zonal mean meridional temperature gradient on time scales greater than 2 days. Although the shape of the memory kernel is complex, we show that it may be well approximated as an exponential, particularly when reproducing baroclinic low-frequency intraseasonal modes of variability. By computing the terms in the Lorenz energy cycle, we find that the shape of the memory kernel can be linked to the finite time that growing baroclinic instabilities require to adapt their growth properties to the local zonal mean atmospheric flow stability. Regarding the explanation for observed baroclinic annular modes in the Southern Hemisphere, our results suggest that it is physical for these modes to be derived directly from the thermodynamic equation by considering an exponentially decaying memory kernel, provided accurate estimates of the necessary parameters are incorporated. Significance Statement The goal of this study was to derive the memory of the zonal mean temperature field contained in eddy heat fluxes. To do this we used recent developments in a theory stemming from statistical mechanics, called proxy response theory. This theory facilitated direct numerical computations of the parameterization that links eddy heat fluxes to the zonal mean temperature field. Notably, this parameterization incorporates a crucial memory component, which we demonstrated to be essential in explaining the periodicity of low-frequency modes of variability, specifically the baroclinic annular mode (BAM). Understanding the role of memory as a driver of this variability holds great significance, as the BAM constitutes a dominant pattern of large annular variability within the Southern Hemisphere circulation. Enhanced comprehension of this driver, which is memory, can lead to improved understanding and predictive capabilities concerning observed annular weather patterns.

Funder

European Research Council

Publisher

American Meteorological Society

Reference74 articles.

1. A nonlinear oscillator describing storm track variability;Ambaum, M. H. P.,2014

2. The statistical properties of general atmospheric circulation: Observational evidence and a minimal theory of bimodality;Benzi, R.,1986

3. New dynamical mean-field dynamo theory and closure approach;Blackman, E. G.,2002

4. A simple mean field approach to turbulent transport;Blackman, E. G.,2003

5. A multiscale asymptotic theory of extratropical wave–mean flow interaction;Boljka, L.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3