A Constant Pressure Upper Boundary Formulation for Models Employing Height-Based Vertical Coordinates

Author:

Klemp J. B.1,Skamarock W. C.1

Affiliation:

1. a National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract For the numerical simulation of atmospheric flows that extend as high as the thermosphere, it is more appropriate to represent the upper boundary of the model domain as a material surface at constant pressure rather than one characterized by a rigid lid. Consequently, in adapting the Model for Prediction Across Scales (MPAS) for geospace applications, a modification of the height-based vertical coordinate is presented that permits the coordinate surfaces at upper levels to transition toward a constant pressure surface at the model’s upper boundary. This modification is conceptually similar to a terrain-following coordinate at low levels, but now modifies the coordinate surfaces at upper levels to conform to a constant pressure surface at the model top. Since this surface is evolving in time, the height of the upper boundary is adaptively adjusted to follow a designated constant pressure upper surface. This is accomplished by applying the hydrostatic equation to estimate the change in height along the boundary that is consistent with the vertical pressure gradient at the model top. This alteration in the vertical coordinate requires only minor modifications and little additional computational expense to the original height-based time-invariant terrain-following vertical coordinate employed in MPAS. The viability of this modified vertical coordinate formulation has been verified in a 2D prototype of MPAS for an idealized case of upper-level diurnal heating. Significance Statement Most atmospheric numerical models that use a height-based vertical coordinate employ a rigid lid at the top of the model domain. While a rigid lid works well for applications in the troposphere and stratosphere, it is not well suited for applications extending into the thermosphere where significant vertical expansion/contraction occurs due to deep heating/cooling of the atmosphere. This paper develops and tests a simple modification to the height-based coordinate formulation that allows the height of the upper boundary to adaptively follow a constant pressure surface. This added flexibility in the treatment of the upper domain boundary for height-based models may be particularly beneficial in facilitating their transition to a deep atmosphere configuration without significant retooling of the model numerics.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference20 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3