Affiliation:
1. a National Center for Atmospheric Research, Boulder, Colorado
Abstract
Abstract
For the numerical simulation of atmospheric flows that extend as high as the thermosphere, it is more appropriate to represent the upper boundary of the model domain as a material surface at constant pressure rather than one characterized by a rigid lid. Consequently, in adapting the Model for Prediction Across Scales (MPAS) for geospace applications, a modification of the height-based vertical coordinate is presented that permits the coordinate surfaces at upper levels to transition toward a constant pressure surface at the model’s upper boundary. This modification is conceptually similar to a terrain-following coordinate at low levels, but now modifies the coordinate surfaces at upper levels to conform to a constant pressure surface at the model top. Since this surface is evolving in time, the height of the upper boundary is adaptively adjusted to follow a designated constant pressure upper surface. This is accomplished by applying the hydrostatic equation to estimate the change in height along the boundary that is consistent with the vertical pressure gradient at the model top. This alteration in the vertical coordinate requires only minor modifications and little additional computational expense to the original height-based time-invariant terrain-following vertical coordinate employed in MPAS. The viability of this modified vertical coordinate formulation has been verified in a 2D prototype of MPAS for an idealized case of upper-level diurnal heating.
Significance Statement
Most atmospheric numerical models that use a height-based vertical coordinate employ a rigid lid at the top of the model domain. While a rigid lid works well for applications in the troposphere and stratosphere, it is not well suited for applications extending into the thermosphere where significant vertical expansion/contraction occurs due to deep heating/cooling of the atmosphere. This paper develops and tests a simple modification to the height-based coordinate formulation that allows the height of the upper boundary to adaptively follow a constant pressure surface. This added flexibility in the treatment of the upper domain boundary for height-based models may be particularly beneficial in facilitating their transition to a deep atmosphere configuration without significant retooling of the model numerics.
Publisher
American Meteorological Society
Reference20 articles.
1. The upper-atmosphere extension of the ICON general circulation model (version: ua-icon-1.0);Borchert, S.,2019
2. On the use of a coordinate transformation for the solution of the Navier–Stokes equations;Gal-Chen, T.,1975
3. Stable extension of the unified model into the mesosphere and lower thermosphere;Griffith, M. J.,2020
4. Solar semidiurnal tide in the thermosphere;Hong, S.-S.,1976
5. A terrain following coordinate with smoothed coordinate surfaces;Klemp, J. B.,2011
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献