Machine Learning Methods for Postprocessing Ensemble Forecasts of Wind Gusts: A Systematic Comparison

Author:

Schulz Benedikt1ORCID,Lerch Sebastian12

Affiliation:

1. a Karlsruhe Institute of Technology, Karlsruhe, Germany

2. b Heidelberg Institute for Theoretical Studies, Heidelberg, Germany

Abstract

Abstract Postprocessing ensemble weather predictions to correct systematic errors has become a standard practice in research and operations. However, only a few recent studies have focused on ensemble postprocessing of wind gust forecasts, despite its importance for severe weather warnings. Here, we provide a comprehensive review and systematic comparison of eight statistical and machine learning methods for probabilistic wind gust forecasting via ensemble postprocessing that can be divided in three groups: state-of-the-art postprocessing techniques from statistics [ensemble model output statistics (EMOS), member-by-member postprocessing, isotonic distributional regression], established machine learning methods (gradient-boosting extended EMOS, quantile regression forests), and neural network–based approaches (distributional regression network, Bernstein quantile network, histogram estimation network). The methods are systematically compared using 6 years of data from a high-resolution, convection-permitting ensemble prediction system that was run operationally at the German weather service, and hourly observations at 175 surface weather stations in Germany. While all postprocessing methods yield calibrated forecasts and are able to correct the systematic errors of the raw ensemble predictions, incorporating information from additional meteorological predictor variables beyond wind gusts leads to significant improvements in forecast skill. In particular, we propose a flexible framework of locally adaptive neural networks with different probabilistic forecast types as output, which not only significantly outperform all benchmark postprocessing methods but also learn physically consistent relations associated with the diurnal cycle, especially the evening transition of the planetary boundary layer.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3