An OSSE Study of the Impact of Micropulse Differential Absorption Lidar (MPD) Water Vapor Profiles on Convective Weather Forecasting

Author:

Kay Junkyung1ORCID,Weckwerth Tammy M.1,Lee Wen-Chau1,Sun Jenny1,Romine Glen1

Affiliation:

1. a National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract The National Center for Atmospheric Research (NCAR) and Montana State University jointly developed water vapor micropulse differential absorption lidars (MPDs) that are a significant advance in eye-safe, unattended, lidar-based water vapor remote sensing. MPD is designed to provide continuous vertical water vapor profiles with high vertical (150 m) and temporal resolution (5 min) in the lower troposphere. This study aims to investigate MPD observation impacts and the scientific significance of MPDs for convective weather analyses and predictions using observation system simulation experiments (OSSEs). In this study, the Data Assimilation Research Testbed (DART) and the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) Model are used to conduct OSSEs for a case study of a mesoscale convective system (MCS) observed during the Plains Elevated Convection At Night (PECAN) experiment. A poor-performing control simulation that was drawn from a 40-member ensemble at 3-km resolution is markedly improved by assimilation of simulated observations drawn from a more skillful simulation that served as the nature run at 1-km resolution. In particular, assimilating surface observations corrected surface warm front structure errors, while MPD observations remedied errors in low- to midlevel moisture ahead of the MCS. Collectively, these analyses changes led to markedly improved short-term predictions of convection initiation, evolution, and precipitation of the MCS in the simulations on 15 July 2015. For this case study, the OSSE results indicate that a more dense MPD network results in better prediction performance for convective precipitation while degrading light precipitation prediction performance due to an imbalance of the analysis at large scales.

Funder

NOAA

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3