Stable Numerical Implementation of a Turbulence Scheme with Two Prognostic Turbulence Energies

Author:

Mašek Ján1ORCID,Ďurán Ivan Bašták2,Brožková Radmila1

Affiliation:

1. a Czech Hydrometeorological Institute, Prague, Czech Republic

2. b Goethe University, Frankfurt, Germany

Abstract

Abstract In this paper, we present a new and more stable numerical implementation of the two-energy configuration of the Third Order Moments Unified Condensation and N-dependent Solver (TOUCANS) turbulence scheme. The original time-stepping scheme in TOUCANS tends to suffer from spurious oscillations in stably stratified turbulent flows. Because of their high frequency, the oscillations resemble the so-called fibrillations that are caused by the coupling between turbulent exchange coefficients and the stability parameter. However, our analysis and simulations show that the oscillations in the two-energy scheme are caused by the usage of a specific implicit–explicit temporal discretization for the relaxation terms. In TOUCANS, the relaxation technique is used on source and dissipation terms in prognostic turbulence energy equations to ensure numerical stability for relatively long time steps. We present both a detailed linear stability analysis and a bifurcation analysis, which indicate that the temporal discretization is oscillatory for time steps exceeding a critical time-step length. Based on these findings, we propose a new affordable time discretization of the involved terms that makes the scheme more implicit. This ensures stable solutions with enough accuracy for a wider range of time-step lengths. We confirm the analytical outcomes in both idealized 1D and full 3D model experiments. Significance Statement The vertical turbulent transport of momentum, heat, and moisture has to be parameterized in numerical weather prediction models. The parameterization typically employs nonlinear damping equations, whose numerical integration can lead to unphysical, time-oscillating solutions. In general, a presence of such numerical noise negatively affects the model performance. In our work, we address numerical issues of the recently developed scheme with two prognostic turbulence energies that have more realism and physical complexity. Specifically, we detect, explain, and design a numerical treatment for a new type of spurious oscillations that is connected to the temporal discretization. The treatment suppresses the oscillations and allows us to increase the model time step more than 4 times while keeping an essentially non-oscillatory solution.

Funder

technology agency of the czech republic

hans ertel centre for weather research

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3