The Reanalysis for the Global Ensemble Forecast System, Version 12

Author:

Hamill Thomas M.1,Whitaker Jeffrey S.1,Shlyaeva Anna2,Bates Gary3,Fredrick Sherrie3,Pegion Philip3,Sinsky Eric45,Zhu Yuejian5,Tallapragada Vijay5,Guan Hong56,Zhou Xiaqiong45,Woollen Jack45

Affiliation:

1. a NOAA/Physical Sciences Laboratory, Boulder, Colorado

2. b Joint Center for Satellite Data Assimilation, University Corporation for Atmospheric Research, Boulder, Colorado

3. c Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

4. d I. M. Systems Group, Inc., College Park, Maryland

5. e NOAA/NWS/NCEP/Environmental Modeling Center, College Park, Maryland

6. f Systems Research Group, Inc., College Park, Maryland

Abstract

Abstract NOAA has created a global reanalysis dataset, intended primarily for initialization of reforecasts for its Global Ensemble Forecast System, version 12 (GEFSv12), which provides ensemble forecasts out to +35-days lead time. The reanalysis covers the period 2000–19. It assimilates most of the observations that were assimilated into the operational data assimilation system used for initializing global predictions. These include a variety of conventional data, infrared and microwave radiances, global positioning system radio occultations, and more. The reanalysis quality is generally superior to that from NOAA’s previous-generation Climate Forecast System Reanalysis (CFSR), demonstrated in the fit of short-term forecasts to the observations and in the skill of 5-day deterministic forecasts initialized from CFSR versus GEFSv12. Skills of reforecasts initialized from the new reanalyses are similar but slightly lower than skills initialized from a preoperational version of the real-time data assimilation system conducted at the higher, operational resolution. Control member reanalysis data on vertical pressure levels are made publicly available.

Funder

National Oceanic and Atmospheric Administration

Climate Program Office

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3