Self-Organizing Maps for the Classification of Spatial and Temporal Variability of Tornado-Favorable Parameters

Author:

Abstract

Abstract A nuanced analysis of the spatial and temporal distribution of supercell tornadoes and the characteristics of the near-storm environments associated with those tornadoes is critical to improving our understanding of the range of environments that can be considered tornado-favorable. This work classifies both supercell tornado probabilities and their associated environmental parameters on hourly and daily time scales based on geographical regions: regional probability of tornado events and the probability of deviation above or below the median tornadic near-storm environmental parameter values are estimated by kernel density estimation and classified by self-organizing maps (SOMs). The SOM classification for tornado probability allows for further examination of the deviation of the environmental parameters from the median for each probability cluster. Regions that have similar tornado probabilities but differ in the deviation of the environmental parameters (“parameter anomalies”) are also highlighted using SOMs. The anomaly patterns for different regions and parameters generally evolve along either seasonal or diurnal scales, but rarely both, highlighting the need for flexible models of tornado potential based on the near-storm environment. The spatial and temporal variability of parameter anomalies add complexity to traditional forecasting approaches that depend upon a fixed set of environmental parameter thresholds. This work highlights the need to develop region-specific and potentially time-specific environmental baseline evaluation to improve forecast and warning skill.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3