The Effect of a Kona Low on the Eastern Pacific Valentine’s Day (2019) Atmospheric River

Author:

Chen Sue1,Reynolds Carolyn A.1,Schmidt Jerome M.1,Papin Philippe P.2,Janiga Matthew A.1,Bankert Richard1,Huang Andrew3

Affiliation:

1. a Naval Research Laboratory, Monterey, California

2. b National Research Council, National Academy of Sciences, Washington, D.C.

3. c Science Applications International Corporation, Monterey, California

Abstract

Abstract A high-impact atmospheric river (AR) event that made landfall on the U.S. West Coast on Valentine’s Day of 2019 and produced widespread flooding in California is examined. The U.S. Naval Research Laboratory cloud resolving and high-resolution Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) captures the main features impacting the life cycle and structure of the Valentine’s Day AR. Analysis of the model-simulated AR reveals the complex processes leading up to the initial northeastward surge of the water vapor and enhanced near-surface flow associated with this AR. These include the preexistence of a mesoscale cold-core kona low, a mesoscale anticyclone, and a strong low-level convergence in the corridor between the kona low and mesoscale anticyclone where the environment becomes supersaturated in a region of weak vertical wind shear. Model sensitivity experiments show that the eastward progression and magnitude of the AR water vapor surge are strongly sensitive to the magnitude of kona low circulation. Experiments with the kona low circulation amplitude reduced to less than 25% showed that the AR is not able to reach the U.S. West Coast. These results help to identify key new aspects of an important player—the kona low—and its significant contributions to the overall AR characteristics of this particular observed event.

Funder

u.s. naval research laboratory

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference66 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3