“Gray Zone” Simulations using a Three-Dimensional Planetary Boundary Layer Parameterization in the Weather Research and Forecasting Model

Author:

Juliano Timothy W.1,Kosović Branko1,Jiménez Pedro A.1,Eghdami Masih1,Haupt Sue Ellen1,Martilli Alberto2

Affiliation:

1. a Research Applications Laboratory, National Center for Atmospheric Research, Boulder, CO 80301

2. b Centro Investigaciones Energéticas, Medioambientales y Tecnológicas, 28040 Madrid, Spain

Abstract

AbstractGenerating accurate weather forecasts of planetary boundary layer (PBL) properties is challenging in many geographical regions, oftentimes due to complex topography or horizontal variability in, for example, land characteristics. While recent advances in high-performance computing platforms have led to an increase in the spatial resolution of numerical weather prediction (NWP) models, the horizontal grid cell spacing (Δ x) of many regional-scale NWP models currently fall within or are beginning to approach the gray zone (i.e., Δ x ≈ 100 – 1000 m). At these grid cell spacings, three-dimensional (3D) effects are important, as the most energetic turbulent eddies are neither fully parameterized (as in traditional mesoscale simulations) nor fully resolved [as in traditional large eddy simulations (LES)]. In light of this modeling challenge, we have implemented a 3D PBL parameterization for high-resolution mesoscale simulations using the Weather Research and Forecasting model. The PBL scheme, which is based on the algebraic model developed by Mellor and Yamada, accounts for the 3D effects of turbulence by calculating explicitly the momentum, heat, and moisture flux divergences in addition to the turbulent kinetic energy. In this study, we present results from idealized simulations in the gray zone that illustrate the benefit of using a fully consistent turbulence closure framework under convective conditions. While the 3D PBL scheme reproduces the evolution of convective features more appropriately than the traditional 1D PBL scheme, we highlight the need to improve the turbulent length scale formulation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3