Effects of Flow Dependency Introduced by Background Error in Frequent and Dense Assimilation of Radial Winds Using Observation Error Correlated in Time and Space

Author:

Fujita Tadashi1,Seko Hiromu1,Kawabata Takuya1

Affiliation:

1. a Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan

Abstract

Abstract We investigated the effect of flow dependency in the assimilation of high-density, high-frequency observations. Radial winds from a Doppler radar are assimilated using a regional hybrid four-dimensional variational data assimilation (4D-Var) scheme with a flow-dependent background error covariance. To consistently assimilate 5 km × 5.625° cell-averaged radial winds at an interval of 10 min, the spatial and temporal correlations of the observation error are statistically diagnosed to be incorporated into the hybrid 4D-Var. The spatial correlation width is larger than that expected from instrument error, suggesting a contribution from representation error whose propagation is also considered to lead to temporal correlation, the width of which is diagnosed to increase with forecast time. The background error covariance also has an important role in incorporating observational information into the analysis. Single observation experiments show that the hybrid 4D-Var has more small-scale structure in its flow-dependent background error correlation than the 4D-Var limited from the climatological background error covariance mainly in the former part of the assimilation window. This suggests the higher potential of the hybrid 4D-Var to allow more higher-wavenumber components in the increment. A case study shows that the hybrid 4D-Var makes better use of the dense and frequent observations, reflecting more detailed representation of flow throughout the assimilation window, leading to promising results in the forecast. Sensitivity experiments also show that it is important to use the optimal observation error correlation. It is suggested that the flow-dependent background error becomes necessary to effectively use high-resolution, high-frequency observations.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Ministry of Education, Culture, Sports, Science and Technology

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference80 articles.

1. Estimation using sampled data containing sequentially correlated noise;Bryson;J. Spacecr. Rockets,1968

2. Data assimilation with correlated observation errors: Experiments with a 1-D shallow water model;Stewart;Tellus,2013

3. Diagnosis of observation, background and analysis-error statistics in observation space;Desroziers;Quart. J. Roy. Meteor. Soc.,2005

4. Improving the condition number of estimated covariance matrices;Tabeart;Tellus,2020

5. Conditioning reservoir models on rate data using ensemble smoothers;Evensen;Comput. Geosci.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3