On the Dynamics of the Formation of the Kelvin Cat’s-Eye in Tropical Cyclogenesis. Part I: Climatological Investigation

Author:

Asaadi Ali1,Brunet Gilbert2,Yau M. K.1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

2. Meteorological Research Division, Environment and Climate Change Canada, Dorval, Quebec, Canada

Abstract

Abstract Motivated by Dunkerton et al., a climatological study of 54 developing easterly waves in 1998–2001 was performed. Time-lagged composites in a translating reference frame following the disturbances indicate a weak meridional potential vorticity (PV) gradient of the easterly jet and a cyclonic critical layer located slightly to the south of the weak PV gradient, consistent with previous findings in the marsupial paradigm. Using a closed PV contour as a criterion for the formation of the cat’s-eye, it was shown that on average it takes ~2.6 days for open PV contours to transform to a closed coherent structure. Bootstrap analysis was then applied to determine the reliability of the easterly wave–like pattern in the composite perturbation PV analysis. It is suggested that the coexistence of a nonlinear critical layer and a region of weak meridional PV gradient over several days, found to occur in only ~25% of the easterly waves, might be a major factor to distinguish developing and nondeveloping disturbances. This finding may explain why only a small fraction of easterly waves contribute to tropical cyclogenesis. Additionally, an analytic time scale of the form was obtained, where Q is the mass sink, ε is the amplitude of the initial disturbance, and τ is the cat’s-eye formation time that governs the onset of nonlinearity for forced disturbances on a parabolic jet critical layer. This time scale is consistent with that found in 54 cases of easterly waves that developed into named storms, highlighting the importance of nonlinear and diabatic processes in cat’s-eye formation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. African Easterly Wave Strength and Observed Atlantic Tropical Cyclone Genesis and Characteristics;Journal of Geophysical Research: Atmospheres;2024-05-16

2. Dynamical study of three African Easterly Waves in September 2021;Quarterly Journal of the Royal Meteorological Society;2024-04

3. References;Tropical Cyclones;2023

4. Observations of tropical cyclones;Tropical Cyclones;2023

5. Tropical cyclone formation regions in CMIP5 models: a global performance assessment and projected changes;Climate Dynamics;2020-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3