Propagation of Low-Mode Internal Waves through the Ocean

Author:

Rainville Luc1,Pinkel Robert1

Affiliation:

1. Marine Physical Laboratory, Scripps Institution of Oceanography, La Jolla, California

Abstract

Abstract The baroclinic tides play a significant role in the energy budget of the abyssal ocean. Although the basic principles of generation and propagation are known, a clear understanding of these phenomena in the complex ocean environment is only now emerging. To advance this effort, a ray model is developed that quantifies the effects of spatially variable topography, stratification, and planetary vorticity on the horizontal propagation of internal gravity modes. The objective is to identify “baroclinic shoals” where wave energy is spatially concentrated and enhanced dissipation might be expected. The model is then extended to investigate the propagation of internal waves through a barotropic mesoscale current field. The refraction of tidally generated internal waves at the Hawaiian Ridge is examined using an ensemble of mesoscale background realizations derived from weekly Ocean Topography Experiment (TOPEX)/Poseidon altimetric measurements. The path of mode 1 is only slightly affected by typical currents, although its phase becomes increasingly random as the propagation distance from the source increases. The effect of the currents becomes more dramatic as mode number increases. For modes 3 and higher, wave phase can vary between realizations by ±π only a few wavelengths from the source. This phase variability reduces the magnitude of the baroclinic signal seen in altimetric data, creating a fictitious energy loss along the propagation path. In the TOPEX/Poseidon observations, the mode-1 M2 internal tide does appear to lose significant energy as it propagates southwestward from the Hawaiian Ridge. The simulations suggest that phase modulation by mesoscale flows could be responsible for a large fraction of this apparent loss. In contrast, northeast-propagating internal tides encounter a less energetic mesoscale and should experience limited refraction. The apparent energy loss seen in the altimetric data on the north side of the ridge might indeed be real.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 205 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3