Affiliation:
1. Joint Institute for the Study of the Atmosphere and the Ocean, University of Washington, and NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington
Abstract
Abstract
It is well known that some austral summertime subtropical Indian Ocean sea surface temperature (SST) variability correlates with rainfall over certain regions of Africa that depend on rainfall for their economic well-being. Recent studies have determined that this SST variability is at least partially driven by latent heat flux variability, but the mechanism has not been fully described. Here, the mechanism that drives this SST variability is reexamined using analyses of operational air–sea fluxes, ocean mixed layer modeling, and simple atmospheric boundary layer physics. The SST variability of interest is confirmed to be mainly driven by latent heat flux variability, which is shown, for the first time, to be mainly caused by near-surface humidity variability. This humidity variability is then shown to be fundamentally driven by the anomalous meridional advection of water vapor. The meridional wind anomalies of interest are subsequently found to occur when the subtropical atmospheric anticyclone is preferentially located toward one of the sides (east/west) of the basin.
Publisher
American Meteorological Society
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献