Affiliation:
1. Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
2. Department of Atmospheric Sciences, Chinese Culture University, Taipei, Taiwan
3. National Science and Technology Center for Disaster Reduction (NCDR), Taipei, Taiwan
Abstract
Abstract
During 8–14 June 2000, a 500-hPa blocking event occurred over Mongolia and northern China (near 45°N, 108°E), which was the only case over this region in June since 1981. As the block developed, the initially weak low-level mei-yu front over southern China evolved into a system with strong baroclinity and subsequently moved south. The frontal passage over Taiwan caused temperatures to drop by 10°C, the largest in June over two decades. Using gridded analyses, manually analyzed weather maps, and satellite and surface data, the present study investigates the evolution of this mei-yu front under the influence of the block. The 925-hPa frontogenetical function is computed and effects of different processes are discussed. As the blocking event developed, concurrent ridge–trough amplification in the lower–midtroposphere produced a reversed thermal pattern. The lower-tropospheric high moved southward, and large-scale confluence and deformation were enhanced between the northerly flow and the prefrontal southwesterly flow. The location of the block, to the west-southwest of the Okhotsk Sea area, allowed it to affect the front over southern China and caused it to penetrate inside 20°N, unusual for the month of June. The distribution of the frontogenetical function indicated that the mei-yu frontogenesis and the maintenance of the front were attributed to both deformation and convergence. These two processes together counteracted the strong frontolysis along the frontal zone from diabatic effects, caused by evaporative cooling of frontal precipitation on the warm side and stronger sensible heat transfer (and daytime heating over less cloudy areas) on the cold side of the front. When deformation, convergence, and diabatic effects were all combined, the net total frontogenesis peaked slightly ahead of the frontal zone, thus contributing to the southward propagation of the front in addition to the advection by postfrontal cold air in the present case. When the front moved into the South China Sea, the cross-frontal thermal gradient diminished rapidly, mainly due to the frontolytic effect from sensible heat flux over warm waters.
Publisher
American Meteorological Society
Reference54 articles.
1. Synoptic-Dynamic Meteorology in Midlatitudes.;Bluestein,1993
2. Mid-Latitude Weather Systems.;Carlson,1991
3. Comparison of barotropic blocking theory with observation.;Charney;J. Atmos. Sci.,1981
4. Mei-yu systems which affect northern Taiwan.;Chen;Atmos. Sci.,1980
5. Observational aspects of Mei-yu phenomena in subtropical China.;Chen;J. Meteor. Soc. Japan,1983
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献