An Analysis of Precipitation Variability, Persistence, and Observational Data Uncertainty in the Western United States

Author:

Guirguis Kristen J.1,Avissar Roni1

Affiliation:

1. Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina

Abstract

Abstract This paper presents an intercomparison of precipitation observations for the western United States. Using nine datasets, the authors provide a comparative climatology and season- and location-specific evaluations of precipitation uncertainty for the western United States and for five subregions that have distinct precipitation climates. All data are shown to represent the general climate features but with high bias among datasets. Interannual variability is similar among datasets with respect to the timing of precipitation excesses and deficits, but important differences occur in the spatial distribution of specific anomalous events. Dataset distribution differences, as represented by their cumulative density functions (CDFs), are statistically significant for 80% of data combinations stratified by subregion and season. The CDFs of anomaly fields are more similar but uncertainty remains, as data differences are significant for 40% of dataset comparisons. Observational uncertainty is low for persistence studies because the data are found to be similar with respect to (i) grid cell estimates of a characteristic persistence time scale and (ii) distributions of anomaly length scales. Spatially, the greatest uncertainty in magnitude differences occurs along the Rocky Mountains in winter, spring, and fall, and along the California coastline in summer. In linear (phase) association, the greatest differences occur in northern Mexico during all seasons; along the Rocky Mountains in winter, spring, and fall; and in California, Nevada, and the intermountain region in summer. Overall, data similarity is lowest in summer as a result of a reduction in phase association and an increase in amplitude differences.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3