Hydrologic Evaluation of Rainfall Estimates from Radar, Satellite, Gauge, and Combinations on Ft. Cobb Basin, Oklahoma

Author:

Gourley Jonathan J.1,Hong Yang2,Flamig Zachary L.12,Wang Jiahu2,Vergara Humberto123,Anagnostou Emmanouil N.4

Affiliation:

1. NOAA/National Severe Storms Laboratory, Norman, Oklahoma

2. Department of Civil Engineering and Environmental Science, Atmospheric Radar Research Center, University of Oklahoma, Norman, Oklahoma

3. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

4. Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut

Abstract

Abstract This study evaluates rainfall estimates from the Next Generation Weather Radar (NEXRAD), operational rain gauges, Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) in the context as inputs to a calibrated, distributed hydrologic model. A high-density Micronet of rain gauges on the 342-km2 Ft. Cobb basin in Oklahoma was used as reference rainfall to calibrate the National Weather Service’s (NWS) Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM) at 4-km/l-h and 0.25°/3-h resolutions. The unadjusted radar product was the overall worst product, while the stage IV radar product with hourly rain gauge adjustment had the best hydrologic skill with a Micronet relative efficiency score of −0.5, only slightly worse than the reference simulation forced by Micronet rainfall. Simulations from TRMM-3B42RT were better than PERSIANN-CCS-RT (a real-time version of PERSIANN-CSS) and equivalent to those from the operational rain gauge network. The high degree of hydrologic skill with TRMM-3B42RT forcing was only achievable when the model was calibrated at TRMM’s 0.25°/3-h resolution, thus highlighting the importance of considering rainfall product resolution during model calibration.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3