Flooding in Western Washington: The Connection to Atmospheric Rivers*

Author:

Neiman Paul J.1,Schick Lawrence J.2,Ralph F. Martin1,Hughes Mimi3,Wick Gary A.1

Affiliation:

1. Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

2. U.S. Army Corps of Engineers, Seattle, Washington

3. NOAA/ESRL and Cooperative Institute for Research in the Environmental Sciences, Boulder, Colorado

Abstract

Abstract This study utilizes multiple decades of daily streamflow data gathered in four major watersheds in western Washington to determine the meteorological conditions most likely to cause flooding in those watersheds. Two are located in the Olympic Mountains and the other two in the western Cascades; and each has uniquely different topographic characteristics. The flood analysis is based on the maximum daily flow observed during each water year (WY) at each site [i.e., the annual peak daily flow (APDF)], with an initial emphasis on the 12 most recent water years between WY1998 and 2009, and then focusing on a 30-year interval between WY1980 and 2009. The shorter time period coincides with relatively complete passive microwave satellite coverage of integrated water vapor (IWV) over the Pacific basin. The combination of IWV imagery and streamflow data highlights a close link between landfalling atmospheric rivers (ARs) and APDFs (i.e., 46 of the 48 APDFs occurred with landfalling ARs). To complement this approach, the three-decade time series of APDFs, which correspond to the availability of the North American Regional Reanalysis (NARR) dataset, are examined. The APDFs occur most often, and are typically largest in magnitude, from November to January. The NARR is used to assess the composite meteorological conditions associated with the 10 largest APDFs at each site during this 30-year period. Heavy precipitation fell during the top 10 APDFs, and anomalously high composite NARR melting levels averaged ~1.9 km MSL, which is primarily above the four basins of interest. Hence, on average, mostly rain rather than snow fell within these basins, leading to enhanced runoff. The flooding on the four watersheds shared common meteorological attributes, including the presence of landfalling ARs with anomalous warmth, strong low-level water vapor fluxes, and weak static stability. There were also key differences that modulated the orographic control of precipitation. Notably, two watersheds experienced their top 10 APDFs when the low-level flow was southwesterly, while the other two basins had their largest APDFs with west–southwesterly flow. These differences arose because of the region’s complex topography, basin orientations, and related rain shadowing.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3