Optimal Compression of High Spectral Resolution Satellite Data via Adaptive Vector Quantization with Linear Prediction

Author:

Huang Bormin1,Ahuja Alok1,Huang Hung-Lung1

Affiliation:

1. Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

Abstract

Abstract Contemporary and future high spectral resolution sounders represent a significant technical advancement for environmental and meteorological prediction and monitoring. Given their large volume of spectral observations, the use of robust data compression techniques will be beneficial to data transmission and storage. In this paper, a novel adaptive vector quantization (VQ)-based linear prediction (AVQLP) method for lossless compression of high spectral resolution sounder data is proposed. The AVQLP method optimally adjusts the quantization codebook sizes to yield the maximum compression on prediction residuals and side information. The method outperforms the state-of-the-art compression methods [Joint Photographic Experts Group (JPEG)-LS, JPEG2000 Parts 1 and 2, Consultative Committee for Space Data Systems (CCSDS) Image Data Compression (IDC) 5/3, Context-Based Adaptive Lossless Image Coding (CALIC), and 3D Set Partitioning in Hierarchical Trees (SPIHT)] and achieves a new high in lossless compression for the standard test set of 10 NASA Atmospheric Infrared Sounder (AIRS) granules. It also compares favorably in terms of computational efficiency and compression gain to recently reported adaptive clustering methods for lossless compression of high spectral resolution data. Given its superior compression performance, the AVQLP method is well suited to ground operation of high spectral resolution satellite data compression for rebroadcast and archiving purposes.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference42 articles.

1. Abousleman, G. P. , 1999: Adaptive coding of hyperspectral imagery. Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Process., Phoenix, AZ, Institute of Electrical and Electronic Engineers, 2243–2246.

2. Hyperspectral image compression using entropy-constrained predictive trellis coded quantization.;Abousleman;IEEE Trans. Image Process.,1997

3. Comparison of minimum spanning tree reordering with bias-adjusted reordering for lossless compression of 3D ultraspectral sounder data.;Ahuja,2006

4. Aumann, H. H., and L.Strow, 2001: AIRS, the first ultraspectral infrared sounder for operational weather forecasting. Proc. 2001 IEEE Aerospace Conf., Big Sky, MT, Institute of Electrical and Electronic Engineers, 1683–1692.

5. Bloom, H. J. , 2001: The Cross-track Infrared Sounder (CrIS): A sensor for operational meteorological remote sensing. Proc. IEEE Int. Geoscience and Remote Sensing Symp., Sydney, Australia, Institute of Electrical and Electronic Engineers, 1341–1343.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3