Characterization of Tornado Spectral Signatures Using Higher-Order Spectra

Author:

Yu Tian-You1,Wang Yadong1,Shapiro Alan2,Yeary Mark B.1,Zrnić Dusan S.3,Doviak Richard J.3

Affiliation:

1. School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma

2. School of Meteorology, University of Oklahoma, Norman, Oklahoma

3. NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract Distinct tornado spectral signatures (TSSs), which are similar to white noise spectra or have bimodal features, have been observed in both simulations and real data from Doppler radars. The shape of the tornado spectrum depends on several parameters such as the range of the tornado, wind field within the storm, and the reflectivity structure. In this work, one of the higher-order spectra (HOS), termed bispectrum, is implemented to characterize TSS, in which the Doppler spectrum is considered a 1D pattern. Bispectrum has been successfully applied to pattern recognition in other fields owing to the fact that bispectrum can retain the shape information of the signal. Another parameter, termed spectral flatness, is proposed to quantify the spectrum variations. It is shown in simulation that both parameters can characterize TSS and provide information in addition to the three spectral moments. The performance of the two parameters and the spectrum width for characterizing TSS are statistically analyzed and compared for various conditions. The potential of the three parameters for improving tornado detection is further demonstrated by tornadic time series data collected by a research Weather Surveillance Radar-1988 Doppler, KOUN, operated by the National Severe Storms Laboratory.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3