Analysis of a Warm-Season Surface-Influenced Mesoscale Convective Boundary in Northwest Mississippi

Author:

Dyer Jamie1

Affiliation:

1. Department of Geosciences, Mississippi State University, Mississippi State, Mississippi

Abstract

Abstract The lower Mississippi River alluvial valley in southeastern Arkansas, northeastern Louisiana, and northwestern Mississippi is characterized by widespread agriculture with few urban areas. Land use is predominantly cultivated cropland with minimal topographic variation; the eastern edge of the alluvial valley is defined by a rapid, although small, change in elevation into a heavily forested landscape, however. This change in land use/land cover has been shown to potentially enhance precipitation through generation of a weak mesoscale convective boundary. This project defines the influence of the land surface on associated precipitation processes by simulating a convective rainfall event that was influenced by regional surface features. Analysis was conducted using a high-resolution simulated dataset generated by the Weather Research and Forecasting Model (WRF). Results show that the strongest uplift coincides with an abrupt low-level thermal boundary, developed primarily by a rapid change from sensible to latent heat flux relative to the agricultural and forested areas, respectively. In addition, surface heating over the cultivated landscape appears to destabilize the boundary layer, with precipitation occurring as air is advected across the land cover boundary and the associated thermal gradient. This information can be used to define and predict surface-influenced convective precipitation along agricultural boundaries in other regions where the synoptic environment is weak.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3