Blowing Snow on Arctic Sea Ice: Results from an Improved Sea Ice–Snow–Blowing Snow Coupled System

Author:

Chung Yi-Ching1,Bélair Stéphane1,Mailhot Jocelyn1

Affiliation:

1. Meteorological Research Division, Environment Canada, Dorval, Quebec, Canada

Abstract

Abstract A one-dimensional (1D) version of a blowing snow model, called PIEKTUK-D, has been incorporated into a snow–sea ice coupled system. Blowing snow results in sublimation of approximately 12 mm of snow water equivalent (SWE), which is equal to approximately 6% of the annual precipitation over 324 days from 1997 to 1998. This effect leads to an average decrease of 9 cm in snow depth for an 11-month simulation of the Surface Heat Budget of the Arctic Ocean (SHEBA) dataset (from 31 October 1997 to 1 October 1998). Inclusion of blowing snow has a significant impact on snow evolution between February and June, during which it is responsible for a decrease in snow depth error by about 30%. Between November and January, however, other factors such as regional surface topography or horizontal wind transport may have had a greater influence on the evolution of the snowpack and sea ice. During these few months the new system does not perform as well, with a snow depth percentage error of 39%—much larger than the 12% error found between February and June. The results also indicate a slight increase of 4 cm on average for ice thickness, and a decrease of 0.4 K for the temperature at the snow–ice interface. One of the main effects of blowing snow is to shorten the duration of snow cover above sea ice by approximately 4 days and to lead to earlier ice melt by approximately 6 days. Blowing snow also has a very small impact on internal characteristics of the snowpack, such as grain size and density, leading to a weaker snowpack.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference48 articles.

1. Near-surface water vapor over polar sea ice is always near ice saturation;Andreas;J. Geophys. Res.,2002

2. Reassessment of winter precipitation on Alaska’s Arctic slope and measurement on the flux of wind-blown snow;Benson,1982

3. Snowdrift suspension and atmospheric turbulence. Part I: Theoretical background and model description;Bintanja;Bound.-Layer Meteor.,2000

4. Simulation of snow on Arctic sea ice using a coupled snow–ice model;Chung;J. Hydrometeor.,2010

5. Snow saltation threshold measurements in a drifting-snow wind tunnel;Clifton;J. Glaciol.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3