Kinematic Observations of Misocyclones along Boundaries during IHOP

Author:

Marquis James N.1,Richardson Yvette P.1,Wurman Joshua M.2

Affiliation:

1. Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

2. Center for Severe Weather Research, Boulder, Colorado

Abstract

Abstract During the International H2O Project, mobile radars collected high-resolution data of several 0.5–2-km-wide vertically oriented vortices (or misocyclones) along at least five mesoscale airmass boundaries. This study analyzes the properties of the misocyclones in three of these datasets—3, 10, and 19 June 2002—to verify findings from finescale numerical models and other past observations of misocyclones and to further the understanding of the role that they play in the initiation of deep moist convection and nonsupercell tornadoes. Misocyclones inflect or disjoint the swath of low-level convergence along each boundary to varying degrees depending on the size of their circulations. When several relatively large misocyclones are next to each other, the shape of low-level convergence along each boundary is arranged into a staircase pattern. Mergers of misocyclones are an important process in the evolution of the vorticity field, as a population of small vortices consolidates into a smaller number of larger ones. Additionally, merging misocyclones may affect the mixing of thermodynamic fields in their vicinity when the merger axis is perpendicular to the boundary. Misocyclones interact with linear and cellular structures in the planetary boundary layers (PBLs) of the air masses adjacent to each boundary. Cyclonic low-level vertical vorticity generated by both types of structures makes contact with each boundary and sometimes is incorporated into preexisting misocyclones. Intersections of either type of PBL structure with the boundary result in strengthened pockets of low-level convergence and, typically, strengthened misocyclones.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference57 articles.

1. Arnott, N., Y.Richardson, J.Wurman, and J.Lutz, 2003: A solar calibration technique for determining mobile radar pointing angles. Preprints, 31st Int. Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., CD-ROM, P3C.12.

2. Relationship between a weakening cold front, misocyclones, and cloud development on 10 June 2002 during IHOP.;Arnott;Mon. Wea. Rev.,2006

3. Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis.;Atkins;Mon. Wea. Rev.,1995

4. A technique for maximizing details in numerical weather map analysis.;Barnes;J. Appl. Meteor.,1964

5. Biggerstaff, M. I., and J.Guynes, 2000: A new tool for atmospheric research. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 277–280.

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3