Toward a Fully Parametric Retrieval of the Nonraining Parameters over the Global Oceans

Author:

Elsaesser Gregory S.1,Kummerow Christian D.1

Affiliation:

1. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Abstract

Abstract In light of the upcoming launch of the Global Precipitation Measurement (GPM) mission, a parametric retrieval algorithm of the nonraining parameters over the global oceans is developed with the ability to accommodate all currently existing and planned spaceborne microwave window channel sensors and imagers. The physical retrieval is developed using all available sensor channels in a full optimal estimation inversion. This framework requires that retrieved parameters be physically consistent with all observed satellite radiances regardless of the sensor being used. The retrieval algorithm has been successfully applied to the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), the Special Sensor Microwave Imager (SSM/I), and the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) with geophysical parameter retrieval results comparable to independent studies using sensor-optimized algorithms. The optimal estimation diagnostics characterize the retrieval further, providing errors associated with each of the retrieved parameters, indicating whether the retrieved state is physically consistent with observed radiances, and yielding information on how well simulated radiances agree with observed radiances. This allows for the quantitative assessment of potential calibration issues in either the model or sensor. In addition, there is an expected, consistent response of these diagnostics based on the scene being observed, such as in the case of a raining scene, allowing for the emergence of a rainfall detection scheme providing a new capability in rainfall identification for use in passive microwave rainfall and cloud property retrievals.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference52 articles.

1. Determination of oceanic total precipitable water from the SSM/I.;Alishouse;IEEE Trans. Geosci. Remote Sens.,1990

2. Global assessment of marine boundary layer cloud droplet number concentration from satellite.;Bennartz;J. Geophys. Res.,2007

3. Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment.;Berg;J. Appl. Meteor.,2006

4. Determination of an Amazon hot reference target for the on-orbit calibration of microwave radiometers.;Brown;J. Atmos. Oceanic Technol.,2005

5. Ocean surface wind speed and direction retrievals from the SSM/I.;Chang;IEEE Trans. Geosci. Remote Sens.,1998

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3