Impacts of a New Solar Radiation Parameterization on the CPTEC AGCM Climatological Features

Author:

Barbosa H. M. J.1,Tarasova T. A.1,Cavalcanti I. F. A.1

Affiliation:

1. Centro de Previsão de Tempo e Estudos Climáticos, Cachoeira Paulista, São Paulo, Brazil

Abstract

Abstract The impacts of improved atmospheric absorption on radiative fluxes, atmospheric circulation, and hydrological cycle for long-term GCM integrations are investigated. For these runs the operational version of the Centro de Previsão de Tempo e Estudos Climáticos (CPTEC) AGCM and its enhanced version with a new solar radiation scheme are used. There is an 8% increase in the annual mean global average atmospheric absorption in the enhanced integration as compared with the operational model integration. The extra absorption is due to gases (0.5%), the water vapor continuum (1.5%), and background aerosols (6%), which were not considered in the operational solar radiation scheme. Under clear-sky conditions the enhanced model atmospheric absorption is in agreement with observations to within ±3 W m−2, while for all-sky conditions the remaining errors are related to unaccounted-for cloud absorption. There is a general warm-up of the atmosphere in the enhanced model with temperatures increasing up to ∼3 K in the troposphere and ∼5–8 K in the stratosphere, bringing the model closer to the reference values. The intensities of the tropospheric jets are reduced by 7%–8%, while that of the polar night stratospheric jet is increased by 5%–10%, reducing the model systematic error. The reduced availability of latent energy for the saturated convective processes weakens the meridional circulation and slows down the hydrological cycle. The model overestimation of December–February precipitation over the South Pacific convergence zone (SPCZ) and the South Atlantic convergence zone (SACZ) is reduced by 0.5–1.0 mm day−1, and that over the Northern Hemisphere storm-tracks region is reduced by 0.5 mm day−1. On a monthly time scale, the changes in the precipitation distribution over the SACZ are found to be much larger, ±2–3 mm day−1.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3