Measuring East Asian Summer Monsoon Rainfall Contributions by Different Weather Systems over Taiwan

Author:

Wang Shih-Yu1,Chen Tsing-Chang1

Affiliation:

1. Atmospheric Science Program, Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

Abstract

Abstract The east Asian summer monsoon (EASM) is characterized by a distinct life cycle consisting of the active, break, and revival monsoon phases. Different weather systems prevail in each phase following the change of large-scale flow regime. During the active phase, midlatitude cold, dry air moving equatorward into the tropics develops eastward-propagating fronts and rainstorms. The western ridge of the North Pacific subtropical anticyclone, which leads to the break phase, suppresses the development of synoptic-scale weather systems but enhances the diurnal heating. In the revival phase, the monsoon trough displaces the anticyclonic ridge northward and increases typhoon activity. This study examines quantitative measurements of climatological rainfall contributed by these weather systems that will help to validate simulations of the EASM climate system and facilitate water management by government agencies. To accomplish this goal, rain gauge measurements in Taiwan were analyzed. It was found that in the active phase (late spring–early summer), mei-yu rainstorms forming over northern Indochina and the South China Sea contribute one-half of the total rainfall, and cold-frontal passages account for about 15%. During the synoptically inactive break spell (midsummer), rainfall is produced mainly by diurnal convection (51%) along the western mountain slopes of the island. In the revival phase (late summer–early autumn), the impacts of diurnal convection and typhoons become comparable, with each accounting for about 40% of the total rainfall. The diurnal and typhoon contributions are separated by the north–south-oriented mountain range, with more than 50% of diurnal (typhoon) rainfall over the western (eastern) half of the island. Rainfall contributions from diurnal convection over the entire summer and mei-yu rainstorms in the active monsoon phase are also significant.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference33 articles.

1. Spatio-temporal variations in thunderstorm rainfall over Nigeria.;Adelekan;Int. J. Climatol.,1998

2. A numerical study of the effect of a mountain range on a landfalling tropical cyclone.;Bender;Mon. Wea. Rev.,1985

3. A numerical study of the effect of island terrain on tropical cyclones.;Bender;Mon. Wea. Rev.,1987

4. Thunderstorm rainfall in the conterminous United States.;Changnon;Bull. Amer. Meteor. Soc.,2001

5. Speaking about the spring rainfall in Taiwan (in Chinese).;Chen;J. Earth Sci.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3