Polarimetric Signatures in Supercell Thunderstorms

Author:

Kumjian Matthew R.1,Ryzhkov Alexander V.1

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract Data from polarimetric radars offer remarkable insight into the microphysics of convective storms. Numerous tornadic and nontornadic supercell thunderstorms have been observed by the research polarimetric Weather Surveillance Radar-1988 Doppler (WSR-88D) in Norman, Oklahoma (KOUN); additional storm data come from the Enterprise Electronics Corporation “Sidpol” C-band polarimetric radar in Enterprise, Alabama, as well as the King City C-band polarimetric radar in Ontario, Canada. A number of distinctive polarimetric signatures are repeatedly found in each of these storms. The forward-flank downdraft (FFD) is characterized by a signature of hail observed as near-zero ZDR and high ZHH. In addition, a shallow region of very high ZDR is found consistently on the southern edge of the FFD, called the ZDR “arc.” The ZDR and KDP columns and midlevel “rings” of enhanced ZDR and depressed ρHV are usually observed in the vicinity of the main rotating updraft and in the rear-flank downdraft (RFD). Tornado touchdown is associated with a well-pronounced polarimetric debris signature. Similar polarimetric features in supercell thunderstorms have been reported in other studies. The data considered here are taken from both S- and C-band radars from different geographic locations and during different seasons. The consistent presence of these features may be indicative of fundamental processes intrinsic to supercell storms. Hypotheses on the origins, as well as microphysical and dynamical interpretations of these signatures, are presented. Implications about storm morphology for operational applications are suggested.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3