Snow Cover Characteristics over the Main Russian River Basins as Represented by Reanalyses and Measured Data

Author:

Khan V.1,Holko L.2,Rubinstein K.1,Breiling M.3

Affiliation:

1. Hydrometeorological Research Centre of the Russian Federation, Moscow, Russia

2. Institute of Hydrology, Slovak Academy of Sciences, Liptovsky Mikulas, Slovakia

3. Technical University Vienna, Vienna, Austria

Abstract

Abstract Snow water equivalents (SWE) produced by the National Centers for Environmental Prediction–U.S. Department of Energy (NCEP–DOE) and 40-yr European Centre for Medium-Range Weather Forecasts (ERA-40) reanalyses and snow depths (SD) produced by the 25-yr Japanese “JRA-25” reanalysis over the main Russian river basins for 1979–2000 were examined against measured data. The analysis included comparisons of mean basin values and correlation of anomalies, as well as seasonal and interannual variabilities and trends. ERA-40 generally provided better estimates of mean SWE values for river basins than did the NCEP–DOE reanalysis. Mean SD values from the JRA-25 reanalysis were systematically underestimated. The best correlations among the anomalies were given by ERA-40, followed by JRA-25. All reanalyses reproduced seasonal variability well, although the differences in absolute values varied substantially. The highest differences were typically connected with the snowmelt period (April and May). Interannual variability confirmed the errors of ERA-40 and JRA-25 in 1992–94 and 1979–83, respectively. Otherwise, the reproduction of the interannual variability of SWE and SD was reasonable. Strong biases in SD data from JRA-25 that decrease with time induce artificial positive trends. Significant underestimations of SWE data by ERA-40 for 1991–94 influenced the values of the trends. NCEP–DOE reasonably represented the trend found in measured data. In general, the highest discrepancies between measured and reanalysis data were found for the northern European and eastern Asian rivers (Pechora, Lena, and Amur). The assessment of the quality of SWE and SD reanalysis data can help potential users in the selection of a particular reanalysis as being appropriate to the purpose of their studies.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3